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Abstract

This study aims at clarifying the phenomenological roots of an acoustical disturbance known as ‘‘clutch squeal noise’’.

A nonlinear two-degrees-of-freedom model is introduced in order to illustrate some basic phenomena leading to self-

generated vibrations. The damping of the system as well as both circulatory and gyroscopic actions are included in order to

highlight their respective influence and the destabilization paradox. Results are obtained on the stability range of the

equilibrium, the nature of the Hopf bifurcation, the limit cycle branches and their stability. A dynamic extension of the

destabilization paradox is proposed and some non-periodic behaviours are identified too.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In cars with manual transmissions, different unforced vibrations can be observed during the sliding phase of
clutch engagement. Low frequencies phenomena such as judder can often be attributed to misalignment in the
transmission chain or to tribological properties of the friction materials, such as a decreasing friction
coefficient with regard to the sliding speed. However, noise due to high frequencies phenomena (up to few
kHz) can be experienced too and is referred as ‘‘clutch squeal noise’’. This audible disturbance can arise even
when the friction coefficient is almost constant and the transmission chain shows no important fault. The
observed amplitude of the phenomenon allows excluding the assumption of a stick-slip cycle too. The present
study aims at investigating an instability origin of these vibrations related to the non-conservative action of the
friction forces.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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The non-conservative aspect of the friction forces is known to be a potential cause for the rise of such self-
generated vibrations in dynamical systems through the destabilization of their stationary states. This has
motivated numerous researchers to focus on such mechanisms for years, see Ref. [1]. Some other industrial
applications in need of such studies can be cited without being exhaustive: brakes, machining, civil engineering
and aeronautic design.

In general, a stability analysis only requires the knowledge of the linearized equations of motion in the
vicinity of the equilibriums, see Ref. [2]. Therefore, phenomenological roots of the spontaneous rise of motion
can be highlighted through rather simple considerations. However, the price to pay for this simplicity is the
complete ignorance of the nature and of any property of the steady state which then takes place. This lack of
knowledge can lead to misinterpretation of experimental observations as well as bad or excessively stringent
design recommendations.

The present paper aims at demonstrating the important role of the nonlinearities and the damping structure
in dynamical systems subject to flutter destabilization. To this purpose, a paradigmatic example model of non-
conservative coupling between the degrees of freedom (DOF) of a clutch is proposed in the first part. This
nonlinear model shows two DOF coupled by both circulatory and gyroscopic actions and takes into account
the structural damping of the system.

The second part serves as a reminder about fundamental results on the stability of the stationary
states. Considerations for the damping structure of the system lead to counter-intuitive results and the so-
called ‘‘destabilization paradox’’. This phenomenon was first reported by Ziegler [3]: he demonstrated the
significance of dynamic terms and the destabilizing effect of weak damping for a double pendulum
subjected to tangential load. Further developments were proposed by Bolotin [4] for non-conservative
stability problems. Then, some researchers [6,5,22] studied the destabilizing effect of viscous damping for
mechanical systems subjected to non-conservative forces. Moreover, Thomsen [20] examined the
nonlinear dynamics of a double pendulum with both linear damping and non-conservative follower loading.
He studied the occurrence of chaotic motion and changes in amplitude due to a destabilizing effect of both
linear and nonlinear forces. The influence of the velocity-dependent forces on the stability of non-conserva-
tive systems as well as the effects of nonlinearities were also studied by O’Reilly et al. [7] and Kirillov
and Seyranian [8]. In spite of these intensive investigations, this topic still motivates researches aiming
at understanding the complex destabilization mechanisms in the presence of damping, see for example
Refs. [9–13].

A static influence of the nonlinearities is also evocated in the determination of the equilibriums and the
nature of the Hopf bifurcation points by the analysis of the first Lyapunov coefficient. The important role of
the structural damping is clearly illustrated and a particular relationship to the gyroscopic action is
highlighted.

The third part introduces a nonlinear method for determining the limit cycles of autonomous mechanical
systems which is appropriate to perform parametric studies. An application of the Floquet theory is also
described in order to determine the stability nature of the identified periodic solutions. Then, this approach is
applied on the clutch model to investigate its limit cycles. The complex dynamic behaviour of nonlinear
structures is clearly illustrated on this example. Neimark–Sacker bifurcations and a possible route to chaos
according to the Ruelle–Takens scenario are highlighted with the help of Poincaré sections. Such a turbulent
behaviour was already mentioned in Ref. [20] for instance.

Finally, conclusions are drawn on the sensitivity of self-generated vibrations in mechanical structures to the
physical parameters. A particular attention is paid to the role of the structural damping and the gyroscopic
actions both on the stability of the equilibriums and the post-bifurcation dynamic behaviour.
2. 2-DOF nonlinear model of a squealing clutch

The proposed model of clutch is depicted in Fig. 1. This system was first proposed by Wickramarachi [14]
and extensively investigated in the proposed simplified form depicted in Fig. 1 by the authors in Ref. [13].
It consists of two discs ðAÞ and ðBÞ coaxially rotating about the Oz-axis and rubbing on each other.
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Fig. 1. Model of rubbing discs subject to a flutter destabilization.
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Oxyz is the principal inertia frame of ðAÞ. ðAÞ is the friction disc and ðBÞ represents the engine flywheel and the
clutch.

Two DOF are considered. They correspond to the swinging motions of ðAÞ. The swinging angles about Ox

and Oy are noted y and f, respectively. Restoring forces about these motions are represented by linear
stiffness and damping elements, ðky; dyÞ and ðkf; dfÞ about Ox and Oy, respectively. Friction is modelled
in a simplified manner: four deformable elements are considered, equally distributed on radius R on ðAÞ,
and friction occurs at their end. They represent the flexibility of the contact area and they are assumed
to show equal linear stiffness and damping ðkc; dcÞ about Ox. A constant Coulomb law is considered
with the constant friction coefficient m. The rotation speed of both the discs is assumed to be constant. The
parallelism of the discs (y ¼ 0 and f ¼ 0) illustrated in Fig. 1 is supposed to correspond to equilibrium.
The distance between the Oxy plane and the end of the contact elements is noted h. Finally, the amplitude
of the vibrations is assumed to be small enough so that the friction force at the end of each contact element
never vanishes.

The following nonlinear non-dimensional equation of motion can be obtained for this system:
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The upper dot denotes time differentiation with regard to a non-dimensional time scale t. xX0 is the reference
damping factor. aX1 and bX0 are the ratios of the natural frequencies and damping factors, respectively.
j and r are the non-dimensional circulatory and gyroscopic factors, respectively. Finally, s40 is related to the
local stiffening property of the system in the case of non-vanishing motions.



ARTICLE IN PRESS
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These non-dimensional parameters are related to the physical parameters with the expression reported as
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where t is the natural time scale, J is the swinging inertia about Ox and Oy, J$ is the rotational inertia about
Oz, $ is the rotation speed of ðAÞ, O is the rotation speed of ðBÞ and N0 is the load applied to the system.

A particular symmetry of Eq. (1) can be observed since if ½y f�T is a solution for a given value of ðj;rÞ ¼
ðj0; r0Þ then ½y � f�T is a solution for ðj;rÞ ¼ ð�j0;�r0Þ. Therefore, the investigation of negative values of j
can be omitted in any parametric investigation. One can also note that the amplitude of s has no qualitative
effect on the solutions since if ½y f�T is a solution for s ¼ s0 then

ffiffiffiffiffiffiffiffiffiffi
s0=s

p
½y f�T is a solution for any other value

of s.
½0 0�T is the unique equilibrium of Eq. (1). Finally, the linearization of Eq. (1) in the vicinity of the

equilibrium simply gives
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The values used for numerical illustrations in this paper are a ¼ 1:5 and s ¼ 104. As highlighted in Ref. [13]
the value of a has no qualitative effect on the stability analysis, provided aa1. Therefore, the choice a ¼ 1:5 is
representative of any assumed difference between the static frequencies of the swinging modes for the stability
analysis. Moreover, for a fixed value of a, the value of s has no qualitative effect neither, as mentioned later.
The choice of s ¼ 104 allows obtaining reasonable amplitudes for the limit cycles. The influence of the values
of both a and s together on the nonlinear behaviour is not analysed in this paper. Parametric investigations
are performed on the other parameters.
3. Investigation of equilibriums

The equilibriums are steady static states of a system. Their investigation aims at understanding the reasons
why a dynamic state arises preferentially to equilibrium. This section is divided into three parts. Firstly, the
eigenvalues approach of the stability analysis is introduced in order to highlight how equilibrium can become a
repulsive state. Secondly, a local insight into the nonlinear properties of the system in the vicinity of
bifurcations is proposed in order to describe the loss of stability and explain jump phenomena, i.e. the sudden
rise of a large motion when crossing the stability frontier. Finally, the stability of the equilibrium of the
proposed model is investigated and important information is obtained on the role of damping and gyroscopic
actions.
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3.1. Stability analysis

Consider the equation of motion of a dynamic system

_X ¼ fðX; pÞ, (4)

where X represents the instantaneous state of the system (its coordinates in the phase space), the upper dot
denotes time derivation and f is a function of X parameterized by the elements of p. Assume at least one
stationary solution Xeðp0Þ exists for p ¼ p0, i.e. fðXeðp0Þ; p0Þ ¼ 0, and f is C1 in its vicinity. Then, according to
the Hartman–Grobman theorem, the linearization of Eq. (4) in the vicinity of Xeðp0Þ preserves its non-
marginal stability nature. Therefore, the determination of the stability nature of equilibriums only requires the
knowledge of the linearized equation of motion in their vicinity in most cases.

Nevertheless, the nonlinearities allow many equilibriums to exist simultaneously and their evolution when
varying p can be rather complex and possibly discontinuous. Therefore, all equilibrium branches have to be
determined by appropriate approaches as a first step prior to perform a stability analysis of each branch
separately.

Assume the linearized form of Eq. (4) expressed as

_X � DfðXeðp0Þ; p0ÞX. (5)

The solutions of such a linear system form a vector space whose basis is constituted of elements of the form
expressed in Eq. (6) when the Jacobian is diagonalizable, where X0ðp0Þ is the mode shape, t the time and lðp0Þ a
complex factor. lðp0Þ and X0ðp0Þ are an eigenvalue and an associated eigenvector of DfðXeðp0Þ; p0Þ.

XðtÞ ¼ X0ðp0Þe
lðp0Þt. (6)

Because of the form of the solutions, the stability nature of Xeðp0Þ is expressed by the eigenvalues of the
Jacobian DfðXeðp0Þ; p0Þ. Assume the Jacobian has no purely imaginary eigenvalue (hyperbolic equilibrium). If
all the eigenvalues show a strictly negative real part then the equilibrium is asymptotically stable; if at least one
eigenvalue shows a strictly positive real part then the equilibrium is unstable. The imaginary part indicates the
oscillatory or non-oscillatory nature of the corresponding mode.

In the case the Jacobian is not diagonalizable, the solutions have the more general form expressed in Eq. (7),
where P is a polynomial whose order is strictly lower than the multiplicity order of the associated eigenvalue l:

XðtÞ ¼ Pðt; p0Þe
lðp0Þt. (7)

This situation can only lead to instability if the real part of at least one eigenvalue is strictly positive or if the
Jacobian has at least one purely imaginary eigenvalue.

The existence of purely imaginary eigenvalues lacks of robustness with regard to physical parameters.
However, the sign of the real part of the eigenvalues is a robust criterion. Furthermore, because of the
continuity of the eigenvalues with regard to the elements of DfðXeðp0Þ; p0Þ, the locus of purely imaginary
eigenvalues in the parameters space form continuous surfaces, provided the equilibrium evolves continuously
with p. These surfaces separate regions of asymptotic stability and instability, thus they constitute stability
frontiers.

As reported in many previous works the damping structure has an important influence on the stability
frontiers. In Ref. [9], Kirillov considers 2-DOF purely circulatory and purely gyroscopic undamped systems.
He demonstrates for both these systems that the limit of the domain of asymptotic stability as the amplitude of
a perturbing action vanishes can differ from the domain of marginal stability of the unperturbed systems, this
being referred as the destabilization paradox. As a consequence, significant differences can be found between
experienced and theoretically predicted stability frontiers. This effect emphasizes the strong influence of the
structure of the system on the stability frontiers independently from the amplitude of the parameters.

3.2. Nature of the Hopf bifurcation

Assume the system described by Eq. (4) shows a Hopf bifurcation for p ¼ p0 þ Dp with regard to the
element pi of p. By this it is meant that f is assumed to be regular with regard to X and pi at ðXeðp0Þ; p0Þ,
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DfðXeðp0Þ; p0Þ shows one pair of purely imaginary eigenvalues l1;2ðp0Þ ¼ �io0 with o040, all the other
eigenvalues show a strictly negative real part and

dReðl1;2Þ
dpi

ðp0Þa0. (8)

This situation corresponds to the crossing of the stability frontier and the transition between an asymptotically
stable and an unstable nature of the equilibrium. Without loss of generality, one can assume p0 ¼ 0 and
XeðpÞ ¼ 0. For jpij sufficiently small, let X0ðpÞ be associated to l1ðpÞ and X�0ðpÞ be its adjoint eigenvector, i.e.
DfðXeðpÞ; pÞX0ðpÞ ¼ l1ðpÞX0ðpÞ and DfðXeðpÞ; pÞ

TX�0ðpÞ ¼ l1ðpÞX�0ðpÞ, such that hX0ðpÞ
�;X0ðpÞi ¼ 1 where h�; �i

is the inner product h½ui�; ½vi�i ¼
P

i ūivi. According to the Shoshitaishvili theorem the topology of Eq. (4) in the
vicinity of p0 can be judged from its restriction to a local centre manifold, expressed as

XðtÞ ¼ BðtÞX0ðpÞ þ B̄ðtÞX0ðpÞ þ
X3

iþj¼2

1

i!j!
aijðpÞBi B̄j þOðjBj4Þ, (9)

which is locally topologically equivalent to the restriction

XðtÞ ¼ qðtÞX0ðpÞ þ q̄ðtÞX0ðpÞ with qðtÞ ¼ hX�0ðpÞ;XðtÞi. (10)
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Eq. (4) can be changed into

_X ¼ DfðXeðpÞ; pÞXþ gðX; pÞ with g ¼ OðkXk2Þ. (11)

Then, it follows from Eq. (10) that

_q ¼ l1ðpÞqþ hX�0ðpÞ; gðqX0ðpÞ þ q̄X0ðpÞ; pÞi. (12)

Provided f is regular enough, a polynomial expansion can be proposed, see equation

_q ¼ l1ðpÞqþ
X3

iþj¼2

1

i!j!
bijðpÞq

iq̄j þOðjqj4Þ, (13)

with

bijðpÞ ¼
qiþj

qqiqq̄j
hX�0ðpÞ; gðqX0ðpÞ þ q̄X0ðpÞ; pÞi ðq ¼ 0Þ. (14)

Then, the Poincaré normal form (16) is obtained by considering a pertinent change of variable in the form of
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X3
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. (17)
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Finally, a change of variable and time scale expressed in Eq. (18) allows writing Eq. (19) for jpij sufficiently
small,

r ¼
ReðgðpÞÞ
Imðl1ðpÞÞ

�
Reðl1ðpÞÞImðgðpÞÞ

Im2ðl1ðpÞÞ

����
����
�1=2

s and dt ¼
1

o0
1� Im

g pð Þ

o0

� �
jrj2

� �
dt, (18)

ds

dt
¼

Reðl1ðpÞÞ
Imðl1ðpÞÞ

þ i

� �
sþ signðReðgð0ÞÞÞjsj2sþOðjsj4Þ. (19)

According to the centre manifold theory, the dynamical behaviour of Eq. (4) is directly related to the
behaviour of Eq. (20) in the vicinity of the Hopf bifurcation,

ds

dt
¼

Reðl1ðpÞÞ
Imðl1ðpÞÞ

þ i

� �
sþ signðl1Þjsj

2s, (20)

l1 ¼ Reðib11b20 þ o0b21Þ. (21)

l1 defined in Eq. (21) is the first Lyapunov coefficient. Assume l1a0; it can be seen from Eq. (20) that a limit
cycle branch connects with the equilibrium branch at the Hopf bifurcation point. This is why the Hopf
bifurcation is an appropriate candidate phenomenon to explain the rise of self-generated vibrations in
dynamical systems. The stable or unstable nature of this limit cycle, related to the supercritical or subcritical
nature of the bifurcation, respectively, can be judged from the sign of l1. If l1o0 (respectively, l140) then the
bifurcation is supercritical (respectively, subcritical). In the case of a degenerated Hopf bifurcation (l1 ¼ 0)
further developments can be proposed to determine the next Lyapunov coefficients. The interested reader is
referred to Refs. [16,17].
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The determination of the nature of a Hopf bifurcation is of particular importance when dealing with the
suppression of self-generated vibrations caused by such a mechanism. Indeed, a supercritical bifurcation
allows reducing the amplitude of the limit cycle as much as desired in the vicinity of the stability frontier.
Therefore, an acceptable level can be reached without stabilizing the equilibrium. Contrariwise, a subcritical
bifurcation leads to a jump phenomenon at the stability frontier between the equilibrium branch and the
attracting steady state. Moreover, stable vibrations can remain even after the equilibrium is stabilized.

Assume a polynomial expression of g in Eq. (11) in the form

gðX; pÞ ¼ 1
2
PðX;X; pÞ þ 1

6
QðX;X;X; pÞ þOðjXj4Þ, (22)

with

PðU;V; pÞ ¼
X
i;jX1

q2gðX; pÞ
qxiqxj

uivj ðX ¼ 0Þ (23)

and

QðU;V;W; pÞ ¼
X

i;j;kX1

q3gðX; pÞ
qxiqxjqxk

uivjwk ðX ¼ 0Þ, (24)

where xi is the i-th component of X. Because of the relation between Eqs. (4) and (16) mentioned above,
vectors aijðpÞ can be directly identified in Eq. (9) so that

_B ¼ l1ðpÞBþ 1
2
GðpÞjBj2BþOðjBj4Þ. (25)

Writing G, X0, PðU;VÞ, QðU;V;WÞ and Df for Gð0Þ, X0ð0Þ, PðU;V; 0Þ, QðU;V;W; 0Þ and Dfð0; 0Þ, respectively,
substituting Eq. (9) into Eq. (4) and identifying the vectors aijðpÞ in order to fit the form of Eq. (25) for p ¼ 0
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one obtains the following criterion for the nature of the Hopf bifurcation:

L1 ¼ ReðGÞ, (26)

G ¼ hX�0;QðX0;X0;X0Þ þ PðX0; ð2io0I�DfÞ�1PðX0;X0ÞÞ � 2PðX0;Df�1PðX0;X0ÞÞi, (27)

where I is the identity matrix. Of course, the criterion on the sign of L1 defined in Eq. (26) and the sign of l1
defined in Eq. (21) are equivalent, but the latter expression can be more convenient when an expression of g in
the form of Eq. (22) is available.
3.3. Stability analysis of the squealing clutch

A complete parametric analysis of the modes and the stability domain of the equilibrium was proposed by
the authors in Ref. [13]. Eq. (3) can be changed to fit the form of Eq. (4) by considering the state variable
X ¼ ½y f _y _f�T.

Provided no DOF is over-damped, the characteristic polynomial of Eq. (3) is strictly positive on the real
axis. Therefore, the eigenvalues of the system cannot be real. Thus, the trivial equilibrium can only destabilize
by flutter. In order to distinguish the effect of the damping amount and its distribution over the two coupled
DOF, one calls xt ¼ xð1þ abÞ the total damping amount. Then, for xta0 the stability frontier is described by
(see Ref. [13])

jrþ axt

aþ b
1þ ab

� �� �2

� xt jrþ axt

aþ b
1þ ab

� �
1þ a2 þ r2 þ 4

ab

ð1þ abÞ2
x2t

� �
þ x2t ða

2 þ j2Þ ¼ 0. (28)
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The frontiers for a ¼ 1:5 are depicted in Figs. 2 and 3 for various iso-distributed damping amounts and for
various damping distributions, respectively. The domain of marginal stability of the associated undamped
system has also been reported. On this figure, stability is found in the central area and the equilibrium
experiences a Hopf bifurcation when the parameters cross the frontiers.

It can be shown that the illustrated behaviour is not qualitatively affected by the value neither of a nor xt

provided aa1, xta0 and xt sufficiently small. For a ¼ 1 the domain of marginal stability of the undamped
purely circulatory system collapses and this also affects the frontiers of the damped system. However, this
situation physically corresponds to the equality of the frequencies of two distinct modes and is unlikely to
occur in a real system including some geometrical defects. Therefore Figs. 2 and 3 correctly illustrate the
respective influence of the parameters in the general case.

An important observation concerns the distinct role of the damping amount and its distribution,
respectively. On the one hand, the presence of damping adds robustness to stability by changing the domain of
marginal stability into a domain of asymptotic stability whose size depends on the damping amount. On the
other hand, the damping structure rules the shape of the stability frontiers.

This contrast can be emphasized in the manner of Kirillov [9] by considering a vanishing perturbation of an
undamped system. As an example, assume a constant structure of the damping matrix with a fixed value of b
and r ¼ Zxt, i.e. a perturbed undamped purely circulatory system. Then, as xt vanishes, Eq. (28) tends to

ð1þ abÞ2ð1þ Z2Þj2 þ ða2 � 1Þð1� a2b2ÞZj� abða2 � 1Þ2 ¼ 0. (29)

The limits of the stability frontiers as the perturbation vanishes are reported in Fig. 4. It is obvious from this
expression that the stability frontiers of the vanishingly damped system do not necessarily tend to the domain
of marginal stability of the undamped system. Furthermore, looking for maxima of jjj for given a and b,
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B. Hervé et al. / Journal of Sound and Vibration 323 (2009) 944–973956
one obtains

jjmaxj ¼
a2 � 1

2

� �
with jmaxZ ¼

1� a2

2

� �
1� ab
1þ ab

� �
. (30)

This result indicates that the limit of the stability frontier when the perturbation vanishes is at most the limit of
marginal stability of the unperturbed system (coalescence point), in accordance with Ref. [9]. This also reveals
that the smaller the coefficients of the damping matrix are, the more important is to know the structure of this
matrix in order to correctly predict the stability nature of the equilibrium, which constitutes the destabilization
paradox. This makes the understanding of poorly damped systems a difficult matter.

As illustrated in Fig. 4, the locus of the extrema of jjj as xt vanishes correspond to two distinct curves
described by the second part of Eq. (30). Indeed, a maximum of jjj exists for both positive and negative
values. These curves cross each other at Z ¼ 0 and ab ¼ 1. At this point both limits reach their maximum and
therefore the overall stability region is the widest.

A maximum width of the stability domain is also observed close to the purely circulatory system with an iso-
distribution of damping for a non-vanishing damping in Fig. 3. As a matter of fact, the width Dj of the
stability domain can be calculated from Eq. (28) and is a C1 even function of r, which implicates that an
extremum of Dj always exists at r ¼ 0. The authors have reported the optimal damping distribution which
maximize Dj for r ¼ 0 in Ref. [13],

ðabÞopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ða4 � a2 þ 1Þx4t þ 4ða2 þ 1Þða2 � 1Þ2x2t þ ða2 � 1Þ4

q
� 4ða2 � 1Þx2t

4x2t þ ða2 � 1Þ2
, (31)

which actually tends to ðabÞopt ¼ 1 as xt vanishes. Therefore, the iso-distribution of damping can be considered
as a ‘‘practical’’ criterion of optimization of the stability domain for quasi-purely circulatory systems. It can be
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observed in Fig. 2 that the local extreme values of the circulatory action on the frontier evolve very slowly in
the vicinity of purely circulatory systems as the damping amount increases. This emphasizes the important role
of the damping structure relatively to the damping amount.

In order to complete this overview of the stability domain, the nature of the Hopf bifurcation has been
investigated from Eq. (1) and reported in Fig. 5 for two different amounts of damping. It can be observed on
this figure that the damping distribution strongly affects the nature of the bifurcation. Contrariwise, the
amount of damping has a weak influence. Once again, a dominant role of the damping structure is suggested
by this result.

4. Nonlinear analysis and limit cycles

Although the stability analysis is a powerful tool in order to highlight phenomenological roots of self-
generated vibrations, the prediction of their properties definitely requires taking into account the
nonlinearities of the system. To this purpose, a method for determining the limit cycles of autonomous
nonlinear systems is introduced in the first part. Then, a stability analysis of these periodic solutions is
proposed. This last step aims at predicting if the system is likely to converge to one of these solutions or if a
more complex behaviour is to be expected. Finally, the limit cycles of the example model are investigated.

4.1. Determination of the limit cycles

A method is proposed in this section to identify the limit cycle arising from the Hopf bifurcation. This
method is based on an extension of the harmonic balance method. It includes dynamic constraints in order to
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avoid convergence of the estimated solution to the equilibrium. It shares some similarities with the constrained
harmonic balance method (CHBM) proposed by Coudeyras et al. [15].

Assume a system described by

€Y ¼ hðY; _Y; pÞ, (32)

where h is a real function globally continuous with regard to both the real vectors Y and _Y, and a continuous
and piecewise C1 periodic solution exists. This solution can be expressed as a Fourier series,

YðtÞ ¼ A0ðpÞ þ
X
nX1

ðAnðpÞ cosðnoðpÞtÞ þ BnðpÞ sinðnoðpÞtÞÞ, (33)

where AnðpÞ and BnðpÞ are constant vectors and oðpÞ is the angular frequency of the solution. In the previous
expression, oðpÞ is unknown since it is likely to differ from the angular frequency of the unstable mode
obtained by the eigenvalues analysis of the linearized system.

The method consists in changing the time integration problem into an optimization problem. Consider the
following functional:

Cð½An�; ½Bn�;oÞ ¼
Z t0þ2p=o

t0

k €YðtÞ � hðYðtÞ; _YðtÞ; pÞk2 dt. (34)

A solution of Eq. (32) is a global minimum of C. In order to numerically identify it, the Fourier series is
truncated at a high enough order. By doing so, the functional is changed into a function of a finite number of
variables. Finally, convergence to some irrelevant local minima (as equilibrium that is an exact solution of the
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nonlinear expression of Eq. (32)) can be avoided if the following constraints are imposed:

Z t0þ2p=o

t0

ð €YðtÞ � hðYðtÞ; _YðtÞ; pÞÞdt ¼ 0, (35)

Z t0þ2p=oðpÞ

t0

j €YiðtÞjdt�

Z tþ2p=o

t0

jhiðYðtÞ; _YðtÞ; pÞjdt ¼ 0; 8i, (36)

Z t0þ2p=oðpÞ

t0

ð €YiðtÞ þ hiðYðtÞ; _YðtÞ; pÞÞ _YiðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_YiðtÞ

2
þ €YiðtÞ

2
q dt ¼ 0; 8i, (37)

where the subscript i indicates the i-th component of a vector. These proposed constraints correspond to a null
mean error, to a mean respect of the fundamental principle of dynamics on each DOF and to a motion being
neither dilating nor contracting in the phase plane of each DOF, respectively. Other constraints can be used to
improve the convergence, provided they correspond to some properties fulfilled by both the solution and its
approximations.

By solving this problem, not only one finds an approximate form of the solution but also the angular
frequency is identified. Moreover, this approach allows obtaining estimations faster than a direct time
integration of Eq. (32), unstable limit cycles can be identified as well, and no post-processing is required. The
method is particularly efficient with parametric studies of continuous limit cycle branches when one iteratively
uses a result as an initial guess for a close new set of parameters.
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4.2. Stability analysis of the limit cycles

Assume a periodic solution X of Eq. (4) has been identified having the angular frequency o ¼ 2p=T with T

its period. The analysis of its stability aims at determining if this solution is attractive or not, i.e. if the system
is likely to converge or not to this limit cycle. To this purpose, a vanishing perturbation e of X is considered
and X̃ ¼ Xþ e denotes the perturbed solution. Then, one considers the following local approximation of
Eq. (4) in the vicinity of X:

_e � DfðX; pÞ�, (38)

which is a periodic non-autonomous but linear differential equation. Therefore, its solutions form a vector
space. Consider a basis of solution feig. Because of the periodicity of Eq. (38), one can express the elements of
this base as linear combinations of the same elements translated in one period of time,

eiðtþ TÞ ¼
X
jX1

cijejðtÞ; 8i;8t or Eðtþ TÞ ¼MEðtÞ; 8t with E ¼ ½ei�. (39)

The constant matrix M is the monodromy matrix. The basis feig can be chosen so that

Eðt0Þ ¼ I, (40)

where I is the identity matrix and t0 is an arbitrary origin of time. It follows that

M ¼ Eðt0 þ TÞ. (41)

The eigenelements of M characterize the modes of perturbation of X. An eigenvector Vi associated to the
eigenvalue mi is such that MVi ¼ miVi, i.e. Viðtþ TÞ ¼ miViðtÞ. Therefore, according to the Floquet theory

ViðtÞ ¼ YiðtÞe
iðargðmiÞ=TÞteðlogðjmijÞ=TÞt, (42)
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where YiðtÞ is a T-periodic function. It follows that the studied limit cycle is unstable if at least one eigenvalue
of M has a modulus strictly bigger than 1. Because Eq. (4) is autonomous, any translation in time of
X produces a new solution. The difference between this new solution and X corresponds to a periodic
perturbation. Therefore, 1 is always an eigenvalue of M.

Assume one of the other eigenvalue crosses the unit circle and the remaining ones remain inside. Then, it can
be shown from the centre manifold theory that the crossing through 1 corresponds to the junction of a stable
limit cycle with an unstable limit cycle which both disappear. A crossing through �1 corresponds to the
destabilization of the limit cycle and the appearance of period-doubling bifurcation. Finally, a crossing by a
pair of non-real conjugate eigenvalue corresponds to the junction of a stable limit cycle with a stable biperiodic
trajectory (Neimark–Sacker bifurcation).

It can be observed that this stability analysis of the limit cycle is similar to the stability analysis of
equilibriums introduced in the previous section and can even be considered as its generalization. Indeed,
equilibrium can be considered as a periodic solution with any value for T and the same approach can be used
to define the stability. This consideration leads to

M ¼ eDfðXeðp0Þ;p0ÞT . (43)

A translation in time of equilibrium induces no difference so there is no reason for M to admit 1 as an
eigenvalue, except on the stability frontier. According to the centre manifold theory, the period of the
destabilizing mode and the period of the limit cycle arising from the Hopf bifurcation converge to each other
at the bifurcation point. Therefore, if T is chosen so that it is equal to this common period at the bifurcation
point, the exponential of the eigenvalues of DfðXeðp0Þ; p0Þ time T can be expected to continuously connect with
the eigenvalues of the monodromy matrix of the limit cycle at the bifurcation point.
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4.3. Parametric investigation of the limit cycles of the squealing clutch

The proposed method is applied at order 9 (truncation order of the Fourier series) that allows a high enough
precision over the domain of investigation, and the results are compared to direct time integration in Fig. 6 for
xt ¼ 20%, ab ¼ 1, r ¼ 0 and j ¼ 1. It is observed on the whole results that the qualitative results are rather
independent from the damping amount. xt ¼ 20% is a high value of damping. However, high values are
observed to allow obtaining smoother evolutions of the limit cycles. Therefore, this example is more
appropriate for preliminary observations. More realistic damping amounts are investigated later.

Both the trajectory of the identified limit cycle in the state space and the estimated angular frequency are in
very good accordance with the result from time integration. It can be noted in this example that the angular
frequency of the limit cycle is o ¼ 3:85 rad s�1 (see Fig. 5(b)) which greatly differs from the angular frequency
of the unstable linear mode o0 ¼ 1:31 rad s�1 obtained by considering the stability analysis of the linearized
system.

Following Eq. (38), a local approximation of Eq. (1) in the vicinity e ¼ ½�1 �2�
T of a limit cycle X ¼ ½y f�T

can be expressed as

€�1

€�2

" #
þ

2x r

�r 2abx

" #
_�1

_�2

" #
þ

1 j

�j a2

" #
�1

�2

" #
þ 3s

y2�1
f2�2

" #
¼

0

0

� �
. (44)

The eigenvalues of the monodromy matrix obtained for the example by integrating Eq. (44) (see Fig. 7(c) and
(d)) are inside the unit circle, which confirms the stable nature of the identified limit cycle.

The limit cycles can be repeatedly estimated in the same manner in order to perform a parametric
investigation. Such a parametric investigation is reported in Fig. 7 for a variation of the circulatory action and
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in Fig. 8 for a variation of the gyroscopic action for the same values of the other parameters as in the previous
example.

The mean inclination indicated on these figures is the mean inclination of the disc over one period of the
identified limit cycles as expressed in Eq. (45). This expression corresponds to the instantaneous global
inclination of the disc (combination of the two components) averaged over one period of the periodic motion.
The associated stability nature corresponds either to stability if no eigenvalues of the monodromy matrix has a
modulus bigger than 1, instability with a dominant real eigenvalue if the biggest eigenvalues in modulus is real
or instability with a pair of dominant conjugate complex eigenvalue if the biggest eigenvalues in modulus is
complex:

W ¼
o
2p

Z t¼t0þ2p=o

t¼t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ f2

q
dt. (45)

Regarding the evolution of the limit cycle versus the circulatory action for the purely circulatory system, see
Fig. 7, one can observe a unique limit cycle arising at the Hopf bifurcation with growing amplitude and
frequency. The eigenvalues of the monodromy matrix of the limit cycle continuously connect with those of the
equilibrium at the bifurcation point as expected. Then, one eigenvalue is equal to 1 and the other ones remain
inside the unit circle, which indicates a stable limit cycle on the studied domain.

From the end of this domain (j ¼ 1) and by varying the gyroscopic action in the vicinity of 0, see Fig. 8, one
can observe an abrupt evolution of both the amplitude and the frequency, and the appearance of a new limit
cycle branch for r40:03. The eigenvalues of the monodromy matrix indicate that the first branch remains
always stable, whereas the new one shows instability by real eigenvalues for the highest amplitude part and
instability by complex eigenvalues and then stability for the lowest amplitude part.
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These figures illustrate a strong influence of the gyroscopic action on the existence of limit cycle branches
and their evolution, especially in the vicinity of the purely circulatory system for an iso-distribution of
damping. Indeed, a low gyroscopic action drastically modifies the limit cycle. Finally, it is important to
observe in Fig. 8 that the frequency can either increase or decrease as the amplitude grows. Thus the frequency
and the amplitude of the limit cycles are rather independent and show no simple relation.

Figs. 9–26 allow extending these observations to various values of damping amount, damping distribution,
gyroscopic and circulatory actions (the equilibrium is not reported anymore on these figures). These figures
show sections of the parameters space in the same manner as in Figs. 7 and 8 for xt ¼ 5%, 10% and 20%. It
can be firstly checked that the subcritical or supercritical nature of the Hopf bifurcation observed on all these
figures is in perfect accordance with Fig. 5.

The limit cycle branches and their stability domains tend to be more separated in the parameters space as
the damping amount increases. However, no important qualitative effect is observed on their shape and
relative positions. The most important effect of the damping amount is quantitative: the more the damping,
the lower the amplitude and frequency of the limit cycles. The influence of the circulatory action has also a
general tendency, in spite of local discrepancies on unstable limit cycles: the more the circulatory action, the
larger the amplitude and frequency.

The fast evolution of the limit cycle with regard to the gyroscopic action in the vicinity of the purely
circulatory system with an iso-distributed damping which was previously mentioned can be generalized.
Indeed, it can be observed for any damping amount and an iso-distribution of damping that when the purely
circulatory system shows an unstable equilibrium, a change in the gyroscopic action leads to a fast evolution
of the limit cycle, see Figs. 19, 22 and 25. For negative values of the gyroscopic action, a unique limit cycle
with a large amplitude and frequency is observed. This limit cycle evolves slowly for large (negative) values of
the gyroscopic action. For positive values of the gyroscopic action, the amplitude rapidly decreases, reaches a
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minimum then increases slowly. For a large enough gyroscopic action, a new limit cycle branch can be
observed with the same qualitative behaviour as previously discussed. Fig. 22 suggests that the highest
amplitude part and the lowest amplitude part of this new branch are likely to connect to form a closed branch
for a large enough gyroscopic action. The highest amplitude part of this new branch is unstable by a dominant
real eigenvalue of the monodromy matrix, whereas the lowest amplitude part is firstly unstable by complex
eigenvalues, then becomes stable and its amplitude and frequency are close to those of the first branch over a
range of the gyroscopic action.

For a lower circulatory action, i.e. when the purely circulatory system with an iso-distributed damping has a
stable equilibrium, the first branch gets separated into two parts which surround the stable equilibrium. In this
situation a negative gyroscopic action leads to a subcritical bifurcation with an important jump phenomena,
whereas a positive gyroscopic action leads to a supercritical bifurcation. The additional branch appears for a
large enough circulatory action.

The fast evolution of the limit cycle which is observed in the vicinity of the purely circulatory system for
ab ¼ 1 is shifted to negative values of the gyroscopic action as ab is shifted to abo1. As a consequence, the
purely circulatory system shows a far lower limit cycle amplitude and frequency and a very low sensitivity to
the gyroscopic action, see Figs. 18, 21 and 24. The possibility to reach a minimum of amplitude and minimum
of sensitivity with regard to the gyroscopic action by varying the damping distribution is suggested by this
result. In the meanwhile, the additional limit cycle branch is shifted to positive values of the gyroscopic action
and positive values of the circulatory action. The amplitude and frequency of its lowest amplitude part gets
separated from the first branch and their growth is slower with regard to both the circulatory and the
gyroscopic actions, whereas the first branch shows a faster growth. Nevertheless, apart from these points and
the modification of the stability frontier of the equilibrium, the limit cycle branches look very similar for
ab ¼ 1 and abo1.
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Contrariwise, the behaviour of the limit cycle branches becomes more complex as ab is shifted to ab41.
Figs. 20, 23 and 26 reveal that all the parts of the branches have changed their connections in the vicinity of the
purely circulatory system and now all branches interconnect. In Figs. 20, 23 and 26, it can be observed that the
limit cycles are unstable by complex eigenvalues of the monodromy matrix where the parts connect.
Moreover, a particular effect can be observed in Figs. 20, 23 and 26 for the purely circulatory system which
now shows a subcritical bifurcation. A subcritical bifurcation with no stable limit cycle is even observed for the
lowest values of the damping amount, see Figs. 11 and 14. As a consequence when the circulatory action
crosses the stability frontier a jump phenomenon to a steady state which is not a limit cycle is obtained.

Another consequence of the interconnection between the limit cycle branches is that the steady state of the
system can depend on the time history of its parameters, independently from considerations about initial
conditions. Indeed, assume the dynamics of the system remains always close to the identified limit cycles for
slowly varying parameters and follows their branches by continuity. As an example, consider Figs. 17 and 26.
Assume a negative gyroscopic action, e.g. r ¼ �1, and a slowly increasing circulatory action, from j ¼ 0 to 1.
The system shows a unique stable limit cycle as the equilibrium destabilizes. Moreover, no other stable
solution could be identified, thus the steady state is not conditioned by the initial conditions. Then, assume j is
kept constant and r varies from �1 to 1. Then, the arrival state is different from that reached when varying j
from 0 to 1 with r ¼ 1 kept constant. A jump phenomena between limit cycles corresponding to a change of
branch can even be expected in the later case if r is then decreased from r ¼ 1 to �1.

To summarize, some general tendencies can be extracted from this parametric study on the role of the
damping structure, the coupling actions and the nonlinearity.
�
 The stiffening rate of the system for non-vanishing motions (s in Eq. (1)) has an independent and strong influence
as previously mentioned, the more the stiffening, the lower the amplitude but without any effect on the frequency.
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�
 The damping amount has a rather independent effect too, the more the damping, the lower the amplitude
and frequency.

�
 The circulatory action shows a general tendency to increase both the amplitude and the frequency.

�
 The non-symmetrical dependency of the limit cycle to either positive or negative gyroscopic action or

damping distribution with abo1 or ab41 was highlighted.

�
 For the purely circulatory system with an iso-distribution of damping, a high sensitivity to the gyroscopic

action is observed. Changing the damping distribution to either abo1 or ab41 alters this phenomenon by
shifting the fast evolution front to negative values of the gyroscopic action so that the amplitude and
frequency can be largely reduced for the purely circulatory system.
The possibility to reach a robust minimum of amplitude and frequency by varying the damping distribution
for the purely circulatory system was also conjectured. As a matter of fact, the iso-distribution of damping
seems to maximize the amplitude and frequency. This particular property is emphasized in Fig. 27 which
shows the evolution of the unique limit cycle identified for the purely circulatory system over a range of
damping distribution.

It appears clearly on this figure that the iso-distribution leads to a faster increase of the amplitude and
frequency with regard to the circulatory action and represents a local maximum far from the stability frontier.
Contrariwise, local minima can be observed for either abo1 or ab41. The bifurcation nature changes from
supercritical to subcritical as ab changes from abo1 to ab41. Thus not only avoiding an iso-distribution of
damping can allow reducing the limit cycle amplitude but abo1 also appears more favourable than ab41
because of the nature of the associated bifurcation. As an important consequence, a proper design strategy can
allow reducing the amplitude of self-generated vibrations and avoiding subcritical bifurcations in the same
time by adjusting the damping distribution.
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It was shown in the stability analysis of the equilibrium that the widest stability domain is found near the
iso-distribution of damping (ab ¼ 1). Therefore, in a small enough vicinity of the destabilization point, the iso-
distribution of damping can appear as a local minimum of amplitude because of the late rise of the limit cycle.
However, this situation reverses far from the destabilization point and the iso-distribution of damping
becomes a local maximum of the amplitude. In order to explain this observation, it can be reminded that for
the purely circulatory system with an iso-distribution of damping, both stable and unstable modes have the
same frequency (see Ref. [13]). Thus, an intrinsic resonance of the stable mode can be evocated to explain this
particular behaviour.

Therefore, the iso-distribution of damping restrains the most purely circulatory system from destabilizing
but to the detriment of the amplitude of the dynamic state that follows the destabilization. This can be
considered as a dynamic extension of the destabilization paradox. As a concluding remark, the important
contrast between the results from the stability analysis of the equilibrium and the limit cycle amplitude
regarding the influence of the parameters highlights the large difference which exists between a linear and a
nonlinear investigation of the system. These two viewpoints are complementary and require an equal attention
in order to define relevant design strategies. Countermeasures to self-generated vibrations based exclusively on
a stability analysis of the equilibrium would suggest an iso-distribution of damping which can lead to even
higher vibrations amplitude. Contrariwise, taking into account the limit cycles investigation allows defining
two distinct approaches depending on whether or not the instability can be retained.

5. Some comments on the non-periodic dynamic behaviour

In some circumstances neither a stable equilibrium nor a stable limit cycle can be found, as an example see
Fig. 23 for j ¼ 1 and r 2 ½�0:01;�0:05�. This situation cannot be highlighted by the sole identification of the
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limit cycle with the proposed method. The stability analysis of the estimated solution is also necessary. Indeed,
a multi-DOF second-order system can admit steady solutions which are neither equilibrium nor limit cycles,
but dense trajectories in the state space, strange attractors or chaotic motions. In the present section, it is
proposed to illustrate such dynamic behaviours for the proposed system. A practical way to do so is to use
Poincaré sections, see Ref. [18].

In the state space, assume a lower dimensional subspace crossed by the studied trajectory, called a Poincare
section. Then, the locus of the recursive crossings of this subspace by the trajectory in a chosen direction forms
the Poincaré application and is intimately related to the nature of the motion.

Such sections are reported in Fig. 28 for various values of the gyroscopic action and the same values of the
other parameters as in Fig. 23.

Depending on the gyroscopic action, the Poincaré section shows various pattern.
�
 For r ¼ 0, the Poincaré section is restricted to a unique point, which indicates a periodic motion, i.e. a limit
cycle, confirmed by the time evolution of the variables.

�
 For r ¼ �0:01, the Poincaré section is a single loop closed curve, corresponding to the section of a torus in

the state space, thus the motion is biperiodic. The time evolution of the variables shows pseudo-periodic
oscillations limited by a periodic envelop. Moreover, eigenvalues of the monodromy matrix of the identified
limit cycle cross the unit circle through non-real values between r ¼ 0 and �0:01, thus a Neimark–Sacker
bifurcation, i.e. between a limit cycle and a torus, see Ref. [19], can be conjectured to occur.

�
 For r ¼ �0:02, the previous closed curve now appears divided into two imbricated loops, which can

indicate a period-doubling bifurcation of the secondary period of the torus between r ¼ �0:01 and �0:02.
This is qualitatively supported by the previously observed envelop being changed into a half-frequency new
one.
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�
 For r ¼ �0:03 and �0:04, the Poincaré section show scattered points in the vicinity of the previous closed
curve and the corresponding motion is rather irregular. A bifurcation to an n-periodic motion with nX3, a
strange attractor or a chaotic attractor according to the Ruelle–Takens scenario can be evocated, see
Ref. [21].

�
 For r ¼ �0:05, the Poincaré changes back to a closed curve, indicating a biperiodic motion.
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�
 Finally, for r ¼ �0:06 the Poincaré section is restricted again to a unique point, which indicates the
stabilization of the limit cycle.

By comparing Figs. 23 and 28, it can be observed that the mean amplitude and the mean pseudo-period of
the non-periodic motions remain close to those of the identified (unstable) limit cycle. Therefore, even if the
limit cycle is not the attractive state, its characteristics are representative of the steady motion and can still
serve as a design criterion to some extend. This was also observed for other branches of unstable limit cycle.

In spite of the relative simplicity of the proposed model, a wide variety of behaviours is observed when both
the equilibrium and the limit cycles destabilize. Therefore, one can presume that more detailed models with
less regular nonlinearities are even more likely to show such a complexity.

6. Conclusion

A nonlinear 2-DOF system combining damping and both circulatory and gyroscopic actions has been
extensively investigated. Regarding the equilibrium, an important effect of the damping structure on both the
stability frontiers and the nature of the Hopf bifurcation has been exhibited. In particular, it appears that the
iso-distribution of damping is nearly an optimum for the stability range of quasi-purely circulatory systems.
The influence of the gyroscopic action has been illustrated too.

The identification of the limit cycles of the systems also revealed a particular influence of the damping
distribution. Both the connections between the branches of limit cycles and their stability are affected. As an
extension to the destabilization paradox, the iso-distribution of damping has been shown to induce the fastest
growth of the limit cycles for quasi-purely circulatory systems. As a result, the iso-distribution of damping
appears to be at the same time the most desirable structure in order to avoid the destabilization and the worst
configuration in the purpose of reducing the amplitude of the self-generated vibrations. An internal resonance
of the stable mode to the unstable mode is evocated to explain this particular behaviour. Moreover, the
damping structure as well as the sign of the gyroscopic action play an important role in the nonlinear
behaviour of the system. In particular, no symmetry can be observed on the branches of limit cycles between
positive and negative values of the gyroscopic action in the proposed model. The influence of the damping
structure shows no symmetry neither.

Finally, non-periodical stable motions have been shown to take place when neither stable equilibrium nor
stable limit cycle were identified, including multi-periodic motion, strange or chaotic attractors. This large
variety of behaviours exhibited for the rather simple autonomous 2-DOF lumped system allows emphasizing
how complex the dynamics of real-life systems are likely to be. Although the proposed approach can be
applied to some more sophisticated models, some major aspects of friction-induced self-generated vibrations
are highlighted in this paper. Such minimalist models with few DOF can serve as effective tools for
understanding the role of some physical parameters in identified coupling mechanisms.
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